Blow-up of arbitrarily positive initial energy solutions for a viscoelastic wave system with nonlinear damping and source terms
نویسندگان
چکیده
*Correspondence: [email protected] School of Mathematical Sciences, Ocean University of China, Qingdao, P.R. China Abstract This work is concerned with the Dirichlet initial boundary problem for a semilinear viscoelastic wave system with nonlinear weak damping and source terms. For nonincreasing positive functions g and h, we show the finite time blow-up of some solutions whose initial data have arbitrarily high initial energy.
منابع مشابه
Blow-up of Solutions to a Coupled Quasilinear Viscoelastic Wave System with Nonlinear Damping and Source
We study the blow-up of the solution to a quasilinear viscoelastic wave system coupled by nonlinear sources. The system is of homogeneous Dirichlet boundary condition. The nonlinear damping and source are added to the equations. We assume that the relaxation functions are non-negative non-increasing functions and the initial energy is negative. The competition relations among the nonlinear prin...
متن کاملExponential energy decay and blow-up of solutions for a system of nonlinear viscoelastic wave equations with strong damping
with initial and Dirichlet boundary conditions. We prove that, under suitable assumptions on the functions gi, fi (i = 1, 2) and certain initial data in the stable set, the decay rate of the solution energy is exponential. Conversely, for certain initial data in the unstable set, there are solutions with positive initial energy that blow up in finite time. 2000 Mathematics Subject Classificatio...
متن کاملBlow up and global existence in a nonlinear viscoelastic wave equation
where a, b > 0, p > 2, m ≥ 1, and Ω is a bounded domain of R (n ≥ 1), with a smooth boundary ∂Ω. In the absence of the viscoelastic term (g = 0), the problem has been extensively studied and results concerning existence and nonexistence have been established. For a = 0, the source term bu |u|p−2 causes finite time blow up of solutions with negative initial energy (see [2], [8]). For b = 0, the ...
متن کاملGlobal existence, decay and blow up solutions for coupled nonlinear wave equations with damping and source terms
We study the initial-boundary value problem for a system of nonlinear wave equations with nonlinear damping and source terms, in a bounded domain. The decay estimates of the energy function are established by using Nakao’s inequality. The nonexistence of global solutions is discussed under some conditions on the given parameters.
متن کاملBlow up of positive initial-energy solutions for coupled nonlinear wave equations with degenerate damping and source terms
In [] Rammaha and Sakuntasathien studied the global well posedness of the solution of problem (.). Agre and Rammaha [] studied the global existence and the blow up of the solution of problem (.) for k = l = θ = = , and also Alves et al. [] investigated the existence, uniform decay rates and blow up of the solution to systems. After that, the blow up result was improved by Houari []. Al...
متن کامل